

## ACTIVITY OF SYNTHETIC GIBBERELLIN A<sub>15</sub> AND (±)-GIBBERELLIN A<sub>15</sub>-ISOLACTONE

Yo ISOGAI

Biological Institute, College of General Education, University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan

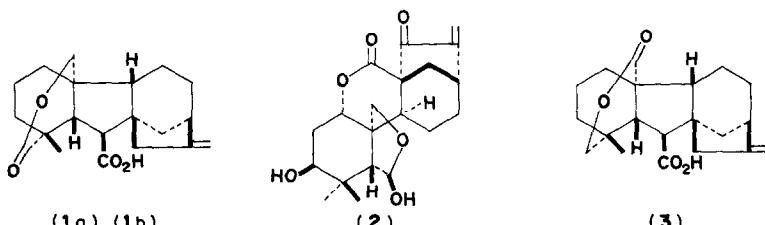
WATARU NAGATA, TOSHIO WAKABAYASHI, MASAYUKI NARISADA,  
YOSHIO HAYASE and SUSUMU KAMATA

Shionogi Research Laboratory, Fukushima-ku, Osaka 553, Japan

and

TOSHIHIKO OKAMOTO, KOICHI SHUDO and MASANORI SOMEI

Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences,  
University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan


(Received 10 June 1973. Accepted 8 August 1973)

**Key Word Index**—Gibberellin A<sub>15</sub>; gibberellin A<sub>15</sub>-isolactone; growth activities.

**Abstract**—The activities of (±)-gibberellin A<sub>15</sub> ((±)-GA<sub>15</sub>) and (±)-gibberellin A<sub>15</sub>-isolactone ((±)-iso-GA<sub>15</sub>) which were obtained by stereocontrolled total synthesis and gibberellin A<sub>15</sub> (E-GA<sub>15</sub>) synthesized by interconversion of enmein were assayed by the rice seedling test. As expected, (±)-GA<sub>15</sub> showed half the activity of natural gibberellin A<sub>15</sub> (GA<sub>15</sub>). E-GA<sub>15</sub> which has a natural configuration showed the same activity as natural gibberellin A<sub>15</sub>, while (±)-iso-GA<sub>15</sub> was almost inactive. These samples were also submitted to the cucumber hypocotyl assay. Contrary to what has already been reported, they were almost inactive.

### INTRODUCTION

CROSS *et al.*<sup>1</sup> and HANSON<sup>2</sup> isolated GA<sub>15</sub> from the culture medium of *Gibberella fujikuroi* and gave its structure (1a). CROSS *et al.*<sup>1</sup> and BRIAN *et al.*<sup>3</sup> reported its biological activity as follows: GA<sub>15</sub> has a very weak activity in the dwarf pea epicotyl assay, the lettuce hypocotyl assay and the dwarf maize (d<sub>1</sub>) assay but it gave the same order of activity as gibberellin A<sub>3</sub> (GA<sub>3</sub>) in the cucumber hypocotyl assay and the dwarf maize (d<sub>3</sub>, d<sub>4</sub>) assay. CROZIER *et al.*<sup>4</sup> reported that GA<sub>15</sub> had a high activity in the dwarf maize (d<sub>5</sub>) assay, an intermediate activity in the lettuce hypocotyl assay, dwarf rice microdrop assay, cucumber hypocotyl assay, and dwarf maize (d<sub>2</sub>) assay and a weak activity in the dwarf pea assay, while it was quite inactive in the barley aleurone assay and the dwarf maize (d<sub>1</sub>, d<sub>3</sub>) assay.



<sup>1</sup> CROSS, B. E., GALT, R. H. B. and HANSON, J. R. (1964) *Regulateurs Naturels de la Croissance Vegetale*, p. 265, Centre National de la Recherche Scientifique, Paris.

<sup>2</sup> HANSON, J. R. (1967) *Tetrahedron* **23**, 733.

<sup>3</sup> BRIAN, P. W., GROVE, J. F. and MULHOLLAND, T. P. C. (1967) *Phytochemistry* **6**, 1475.

<sup>4</sup> CROZIER, A., KUO, C. C., DURLEY, R. C. and PHARIS, R. P. (1970) *Can. J. Botany* **48**, 867.

Recently, stereocontrolled total synthesis of  $(\pm)$ -GA<sub>15</sub> (**1b**) was completed by Nagata *et al.*<sup>5</sup> Their identification was made by comparing their IR, MS, NMR spectra and TLC with those of natural GA<sub>15</sub>. Somei *et al.*<sup>6</sup> attempted to synthesize GA<sub>15</sub> from enmein (**2**), which is a bitter substance isolated from *Plectranthus japonicus*, and they finally succeeded in obtaining 2 mg of pure sample of GA<sub>15</sub> (**1a**), which was identified by comparing its IR and NMR spectra, optical rotatory dispersion (ORD) curve, and also by admixture with natural GA<sub>15</sub>.

These samples and isomeric compounds  $(\pm)$ -iso-GA<sub>15</sub> (**3**) have now been assayed by the rice seedling test and the cucumber hypocotyl assay, and the results will be reported in the present paper.

#### RESULTS AND DISCUSSIONS

The rice seedling test of GA<sub>3</sub>, GA<sub>15</sub> (**1a**),  $(\pm)$ -GA<sub>15</sub> (**1b**),  $(\pm)$ -iso-GA<sub>15</sub> (**3**), and GA<sub>15</sub> from enmein was repeated 4 times, the results are shown in Table 1.

TABLE 1. EFFECT OF VARIOUS GIBBERELLINS ON THE SECOND LEAF SHEATH LENGTH OF RICE SEEDLINGS

| Experiment | Conc. (ppm) | GA <sub>3</sub>  | GA <sub>15</sub> | $(\pm)$ -GA <sub>15</sub> | $(\pm)$ -iso-GA <sub>15</sub> | GA <sub>15</sub> from enmein |
|------------|-------------|------------------|------------------|---------------------------|-------------------------------|------------------------------|
| 1          | 10          | 113.1 $\pm$ 2.2* | 91.0 $\pm$ 1.3   |                           |                               |                              |
|            | 5           |                  | 77.8 $\pm$ 1.5   |                           |                               |                              |
|            | 1           | 95.3 $\pm$ 1.7   | 46.0 $\pm$ 1.2   | 36.4 $\pm$ 0.8            | 25.2 $\pm$ 0.7                | 47.4 $\pm$ 1.1               |
|            | 0.5         |                  | 37.1 $\pm$ 0.7   |                           |                               |                              |
|            | 0.1         | 56.4 $\pm$ 0.9   | 28.2 $\pm$ 0.6   | 24.9 $\pm$ 0.5            | 24.2 $\pm$ 0.3                | 27.9 $\pm$ 0.7               |
|            | 0.05        |                  | 25.2 $\pm$ 0.4   |                           |                               |                              |
|            | Control     | 24.8 $\pm$ 0.3   |                  |                           |                               |                              |
| 2          | 1           | 86.6 $\pm$ 2.4   | 50.4 $\pm$ 1.2   | 40.1 $\pm$ 0.9            | 24.5 $\pm$ 0.4                | 53.8 $\pm$ 1.2               |
|            | 0.5         |                  | 40.5 $\pm$ 0.5   |                           |                               |                              |
|            | 0.1         | 53.8 $\pm$ 1.4   | 28.7 $\pm$ 0.4   | 24.6 $\pm$ 0.4            | 24.3 $\pm$ 0.3                | 28.6 $\pm$ 0.6               |
|            | 0.05        |                  | 25.3 $\pm$ 0.5   |                           |                               |                              |
|            | Control     | 23.7 $\pm$ 0.2   |                  |                           |                               |                              |
| 3          | 1           | 92.8 $\pm$ 1.4   | 55.9 $\pm$ 1.3   | 38.1 $\pm$ 0.7            | 25.0 $\pm$ 0.2                | 54.9 $\pm$ 1.2               |
|            | 0.5         |                  | 44.8 $\pm$ 1.0   |                           |                               |                              |
|            | 0.1         | 58.6 $\pm$ 1.1   | 28.0 $\pm$ 0.9   | 26.1 $\pm$ 0.3            | 23.1 $\pm$ 0.3                | 28.9 $\pm$ 0.4               |
|            | 0.05        |                  | 27.0 $\pm$ 0.4   |                           |                               |                              |
|            | Control     | 24.3 $\pm$ 0.2   |                  |                           |                               |                              |
| 4          | 1           | 98.7 $\pm$ 1.4   | 63.7 $\pm$ 1.0   | 40.0 $\pm$ 0.8            | 25.7 $\pm$ 0.4                | 55.2 $\pm$ 1.0               |
|            | 0.5         |                  | 41.9 $\pm$ 0.4   |                           |                               |                              |
|            | 0.1         | 68.4 $\pm$ 0.7   | 31.2 $\pm$ 0.4   | 27.0 $\pm$ 0.4            | 22.8 $\pm$ 0.4                | 28.4 $\pm$ 0.4               |
|            | 0.05        |                  | 30.6 $\pm$ 0.5   |                           |                               |                              |
|            | Control     | 24.5 $\pm$ 0.2   |                  |                           |                               |                              |

Each figure means average length (mm) of 25 of second leaf sheath.

\* Standard error.

As shown in this table, 1 ppm ( $3 \times 10^{-6}$  mol) of  $(\pm)$ -GA<sub>15</sub> gave almost the same elongation as 0.5 ppm ( $1.5 \times 10^{-6}$  mol) of GA<sub>15</sub> and 0.1 ppm ( $3 \times 10^{-7}$  mol) of  $(\pm)$ -GA<sub>15</sub> gave almost the same elongation as 0.05 ppm ( $1.5 \times 10^{-7}$  mol) of GA<sub>15</sub>. These results suggested that the antipode of natural GA<sub>15</sub> is quite *inactive* in the rice seedling test. The results

<sup>5</sup> NAGATA, W., WAKABAYASHI, T., NARISADA, M., HAYASE, Y. and KAMATA, S. (1970) *J. Am. Chem. Soc.* **92**, 3203; (1971) *ibid.* **93**, 5740.

<sup>6</sup> SOMEI, M. and OKAMOTO, T. (1970) *Chem. Pharm. Bull. (Tokyo)* **18**, 2135; (1972) *Yakugaku Zasshi* **92**, 397.

also showed that ( $\pm$ )-iso-GA<sub>15</sub> is almost inactive and GA<sub>15</sub> from enmein is identical with natural GA<sub>15</sub> in the bioassay. These results also reveal that GA<sub>15</sub> has a specific activity of 50–60% of GA<sub>3</sub>.

TABLE 2. EFFECT OF VARIOUS GIBBERELLINS ON THE HYPOCOTYL LENGTH OF CUCUMBER SEEDLINGS

| Experiment | Dose<br>( $\mu$ g/plant) | GA <sub>3</sub> | GA <sub>15</sub> | ( $\pm$ )-GA <sub>14</sub> | ( $\pm$ )-iso-GA <sub>15</sub> | GA <sub>15</sub><br>from enmein |
|------------|--------------------------|-----------------|------------------|----------------------------|--------------------------------|---------------------------------|
| 1          | 10                       | 41.6 $\pm$ 1.4* |                  |                            |                                |                                 |
|            | 1                        | 36.0 $\pm$ 0.9  | 25.3 $\pm$ 0.6   | 25.1 $\pm$ 0.3             | 24.3 $\pm$ 0.5                 | 25.3 $\pm$ 0.5                  |
|            | 0.5                      |                 | 24.8 $\pm$ 0.4   |                            |                                |                                 |
|            | 0.1                      | 26.3 $\pm$ 0.3  | 24.8 $\pm$ 0.3   | 24.6 $\pm$ 0.5             | 23.6 $\pm$ 0.2                 | 24.2 $\pm$ 0.3                  |
|            | 0.05                     |                 | 24.8 $\pm$ 0.3   |                            |                                |                                 |
|            | Control                  | 23.1 $\pm$ 0.2  |                  |                            |                                |                                 |
| 2          | 10                       | 41.1 $\pm$ 1.1  |                  |                            |                                |                                 |
|            | 1                        | 35.6 $\pm$ 0.7  | 26.5 $\pm$ 0.3   | 25.0 $\pm$ 0.5             | 25.0 $\pm$ 0.4                 | 25.3 $\pm$ 0.4                  |
|            | 0.5                      |                 | 26.5 $\pm$ 0.5   |                            |                                |                                 |
|            | 0.1                      | 26.3 $\pm$ 0.3  | 24.3 $\pm$ 0.3   | 23.6 $\pm$ 0.3             | 23.7 $\pm$ 0.2                 | 24.0 $\pm$ 0.3                  |
|            | 0.05                     |                 | 24.9 $\pm$ 0.2   |                            |                                |                                 |
|            | Control                  | 24.0 $\pm$ 0.2  |                  |                            |                                |                                 |

Each figure means average length (mm) of 20 of hypocotyl length.

\* Standard error.

These samples were also tested by the cucumber hypocotyl assay. Contrary to earlier reports,<sup>1,3,4</sup> GA<sub>15</sub>, E-GA<sub>15</sub>, and also ( $\pm$ )-GA<sub>15</sub>, ( $\pm$ )-iso-GA<sub>15</sub> were almost inactive (Table 2).

## EXPERIMENTAL

Bioassay. (1) Rice seedling test: Seeds\* of dwarf variety of rice (*Oryza sativa* var. Tanginbozu) were soaked in EtOH for 10 min and rinsed 3–4 times with H<sub>2</sub>O and then soaked in a filtered suspension of 10% Ca(OCl)<sub>2</sub> for 1 hr, and washed thoroughly. They were germinated in 300 ml of water in a Petri dish (dia., 21 cm) at 30° under nearly 4000 lx of artificial light for 2 days. The 18 ml of test solutions were mixed with 0.5% agar and heated to effect solution. When cooled, 25 germinating seeds having 1 mm of coleoptiles were selected and "planted" on the surface of the solidified agar, coleoptiles upwards. The dishes were covered with polyethylene film and kept at 30° in 4000 lx for 5 days. The length of the second leaf sheaths of seedlings were measured and mean values calculated. All the glassware and materials used were sterilized, although operations were carried out in an ordinary room.

(2) Cucumber hypocotyl assay: The procedures were almost the same as those of Katsumi *et al.*<sup>7</sup> Seeds of *Cucumis sativus* cv. National Pickling stock (Burpee Seeds Co.) were planted in vermiculite and grown in a growth chamber at 26° under 2000 lx of fluorescent lamps for 6–7 days. When the seedlings had reached a height of 3–4 cm and cotyledons were fully expanded, seedlings having 3 cm of hypocotyl were selected and the hypocotyl were marked with Indian ink 2 cm below the cotyledonary nodes. Test samples were dissolved in 90% EtOH and 0.01 ml of the soln was applied to the apical buds of the seedlings. Measurements were made from the Indian ink mark to the cotyledonary nodes 3 days after the treatment. Controls consisted of treatments with 90% EtOH.

Preparation of test solutions: In the case of ( $\pm$ )-GA<sub>15</sub> and ( $\pm$ )-iso-GA<sub>15</sub>, the amount of the samples available was so small that (220 and 300  $\mu$ g) that they were dissolved in 22 and 30 ml acetone and aliquotes containing 50 and 60  $\mu$ g of each were evaporated by N<sub>2</sub> aeration on a H<sub>2</sub>O bath (40°). GA<sub>15</sub> is sparingly soluble in H<sub>2</sub>O and the mixture was warmed on a H<sub>2</sub>O bath (70°) for several hours with occasional shaking until complete soln.

*Acknowledgement*—We thank Prof. J. R. Hanson, The Chemical Laboratory of Sussex, Brighton, for providing us the sample of natural gibberellin A<sub>15</sub>.

\* 10 g of dry seeds (about 700) are necessary for one Petri dish, which is sufficient to give 350 selected germinating seeds. The seeds were kindly provided by the Aburahi Laboratories of Shionogi & Co. Ltd, Shiga Prefecture.

<sup>7</sup> KATSUMI, M., PHINNEY, B. O. and PURVES, W. K. (1965) *Physiol. Plant.* **18**, 462.